This notebook is parte of the talk on ParameterJuMP.jl in the third annual JuMP-dev workshop, held in Santiago, Chile, 2019
The main purpose of this notebook is to show an application of ParameterJuMP.jl. ParameterJuMP is well suited for Benders like decompositions therefore we shall try to demonstrate the usage of the library in one of the simplest problems that fits in the Benders decomposition framework. Norm-1 regression, which is a particular case of quantile regression is one of such problems.
Note that this is NOT the standard technique to solve Norm-1 regressions. Taylor made methods are available here for instance.
This notebook will require the following libraries:
ParameterJuMP itself
using ParameterJuMP
JuMP: the julia mathematical programming modeling tool
using JuMP
GLPK: A linear programing solver (other solvers could be used - such as Clp, Xpress, Gurobi, CPLEX and so on)
using GLPK const OPTIMIZER = GLPK.Optimizer;
TimerOutputs: a time measuring library to demonstrate the advantage of using ParameterJuMP
using TimerOutputs
The following two julia default libraries
using LinearAlgebra # just use the dot function using Random # to use random number generators
Plots library
using Plots gr(); # plotting backend
We will apply Norm-1 regression to the Linear Regression problem. Linear regression is a statistical tool to obtain the relation between one dependent variable and other explanatory variables. In other words, given a set of $n$ explanatory variables $X = \{ X_1, \dots, X_n \}$ we would like to obtain the best possible estimate for $Y$. In order to accomplish such a task we make the hypothesis that $Y$ is aapproximately linear function of $X$:
\[ Y = \sum_{j =1}^n \beta_j X_j + \varepsilon \]
where $\varepsilon$ is some random error.
The estimation of the $\beta$ values relies on observations of the variables: $\{y^i, x_1^i, \dots, x_n^i\}_i$
In this notebook we will solve a problem where the explanatory variables are sinusoids of differents frequencies
First, we define the number of explanatory variables and observations
const N_Candidates = 100 const N_Observations = 600 const N_Nodes = 100 const Observations = 1:N_Observations const Candidates = 1:N_Candidates const Nodes = 1:N_Nodes ;
Initialize a random number generator to keep results deterministic
rng = Random.MersenneTwister(123);
Building regressors (explanatory) sinusoids
const X = zeros(N_Candidates, N_Observations) const time = [obs / N_Observations * 1 for obs in Observations] for obs in Observations, cand in Candidates t = time[obs] f = cand X[cand, obs] = sin(2 * pi * f * t) end
Define coefficients
β = zeros(N_Candidates) for i ∈ Candidates if rand(rng) ≤ (1-i/N_Candidates)^2 && i≤100 β[i] = 4*rand(rng)/i end end println("First coefs: $(β[1:min(10, N_Candidates)])")
First coefs: [3.76206, 0.790906, 0.883406, 0.0521332, 0.0870966, 0.315345, 0.0, 0.142849, 0.122586, 0.232927]
Create noisy observations
const y = X' * β .+ 0.1*randn(rng, N_Observations) plt = plot(time, y, xlabel = "Time (s)", ylabel = "Amplitude") plot!(plt, time, X'[:,1]) plot!(plt, time, X'[:,3]) plot!(plt, time, X'[:,9])
The classic tool to estimate linear regression models is the Least Squares method.
The least squares method relies on solving the optimization problem:
\[ \max \Bigg\{ \sum_{i \in Observations} \Big( y_i - \sum_{j \in Candidates} \beta_j x_{i,j} \Big) ^2 \Bigg\} \]
In Norm-1 regression, the quadratic functions are replaced by absolute values:
\[ \max\Bigg\{ \sum_{i \in Observations} \Big| y_i - \sum_{j \in Candidates} \beta_j x_{i,j} \Big| \Bigg\} \]
This optimization problem can be recast as a Linear Programming Problem:
\[ \begin{align} & \min_{\varepsilon^{up}, \varepsilon^{dw}, \beta} && \sum_{i \in Observations} {\varepsilon^{up}}_i + {\varepsilon^{dw}}_i && \notag \\ & \text{subject to} && {\varepsilon^{up}}_i \geq + y_i - \sum_{j \in Candidates} \beta_j x_{i,j} && \forall i \in Observations \notag \\ & && {\varepsilon^{dw}}_i \geq - y_i + \sum_{j \in Candidates} \beta_j x_{i,j} && \forall i \in Observations \notag \\ & && {\varepsilon^{up}}_i, {\varepsilon^{dw}}_i \geq 0 && \forall i \in Observations \notag \\ \end{align} \]
Where $Observations$ is the set of all observations.
This linear programming problem can be described in julia with JuMP
# create an alias for the sum function (just for fun!) ∑ = sum # define the model function full_model_regression() time_build = @elapsed begin # measure time to create a model # initialize a optimization model full_model = Model(with_optimizer(OPTIMIZER)) # create optimization variables of the problem @variables(full_model, begin ɛ_up[Observations] ≥ 0 ɛ_dw[Observations] ≥ 0 β[1:N_Candidates] # 0 ≤ β[Candidates] ≤ 8 end) # define constraints of the model @constraints(full_model, begin ɛ_up_ctr[i in Observations], ɛ_up[i] ≥ + ∑(X[j,i] * β[j] for j ∈ Candidates) - y[i] ɛ_dw_ctr[i in Observations], ɛ_dw[i] ≥ - ∑(X[j,i] * β[j] for j ∈ Candidates) + y[i] end) # construct the objective function to be minimized @objective(full_model, Min, ∑(ɛ_up[i] + ɛ_dw[i] for i ∈ Observations)) end # solve the problem time_solve = @elapsed optimize!(full_model) println("First coefficients in solution: $(value.(β)[1:min(10, N_Candidates)])") println("Objective value: $(objective_value(full_model))") println("Time in solve: $time_solve") println("Time in build: $time_build") return nothing end
full_model_regression (generic function with 1 method)
Now we execute the functionthat builds the model and solves it
N_Observations*N_Candidates < 10_000_000 && full_model_regression()
First coefficients in solution: [3.76377, 0.790012, 0.878022, 0.0563155, 0. 0876301, 0.314878, 0.00317523, 0.148887, 0.120253, 0.242875] Objective value: 42.627682385307324 Time in solve: 0.6083206 Time in build: 0.01872011
Benders decompostions is used to solve large optimization problems with some special characteristics. LP's can be solved with classical linear optimization methods such as the Simplex method or Interior point methods provided by solvers like GLPK. However, these methods do not scale linearly with the problem size. In the Benders decomposition framework we break the problem in two pieces: A master and a slave problem.
Of course some variables will belong to both problems, this is where the cleverness of Benders kicks in: The master problem is solved and passes the shared variables to the slave. The slave problem is solved with the shared variables FIXED to the values given by the master problem. The solution of the slave problem can be used to generate a constraint to the master problem to describe the linear approximation of the cost function of the shared variables. In many cases, like stochastic programming, the slave problems have a interesting structure and might be broken in smaller problem to be solved in parallel.
We will descibe the decomposition similarly to what is done in: Introduction to Linear Optimization, Bertsimas & Tsitsiklis (Chapter 6.5): Where the problem in question has the form
\[ \begin{align} & \min_{x, y_k} && c^T x && + f_1^T y_1 && + \dots && + f_n^T y_n && \notag \\ & \text{subject to} && Ax && && && && = b \notag \\ & && B_1 x && + D_1 y_1 && && && = d_1 \notag \\ & && \dots && && \dots && && \notag \\ & && B_n x && && && + D_n y_n && = d_n \notag \\ & && x, && y_1, && && y_n && \geq 0 \notag \\ \end{align} \]
Given a solution for the $x$ variables we can define the slave problem as
\[ \begin{align} z_k(x) \ = \ & \min_{y_k} && f_k^T y_k && \notag \\ & \text{subject to} && D_k y_k && = d_k - B_k x \notag \\ & && y_k && \geq 0 \notag \\ \end{align} \]
The $z_k(x)$ function represents the cost of the subproblem given a solution for $x$. This function is a convex function because $x$ affects only the right hand side of the problem (this is a standard resutls in LP theory).
For the special case of the Norm-1 reggression the problem is written as:
\[ \begin{align} z_k(\beta) \ = \ & \min_{\varepsilon^{up}, \varepsilon^{dw}} && \sum_{i \in ObsSet(k)} {\varepsilon^{up}}_i + {\varepsilon^{dw}}_i && \notag \\ & \text{subject to} && {\varepsilon^{up}}_i \geq + y_i - \sum_{j \in Candidates} \beta_j x_{i,j} && \forall i \in ObsSet(k) \notag \\ & && {\varepsilon^{dw}}_i \geq - y_i + \sum_{j \in Candidates} \beta_j x_{i,j} && \forall i \in ObsSet(k) \notag \\ & && {\varepsilon^{up}}_i, {\varepsilon^{dw}}_i \geq 0 && \forall i \in ObsSet(k) \notag \\ \end{align} \]
The collection $ObsSet(k)$ is a sub-set of the NObservations. Any partition of the NObservations collection is valid. In this notebook we will partition with the function:
function ObsSet(K) obs_per_block = div(N_Observations, N_Nodes) return (1 + (K - 1) * obs_per_block):(K * obs_per_block) end
ObsSet (generic function with 1 method)
Which can be written in JuMP as follows.
At this point we make a small detour to highlight the ParameterJuMP application. Every time you a find a IF block with the flag PARAM
it means that we have two different implmentatins of the method: one relying on ParameterJuMP and the other using pure JuMP.
function slave_model(PARAM, K) # initialize the JuMP model slave = if PARAM # special constructor exported by ParameterJuMP # to add the functionality to the model ModelWithParams(with_optimizer(OPTIMIZER)) else # regular JuMP constructor Model(with_optimizer(OPTIMIZER)) end # Define local optimization variables for norm-1 error @variables(slave, begin ɛ_up[ObsSet(K)] ≥ 0 ɛ_dw[ObsSet(K)] ≥ 0 end) # create the regression coefficient representation if PARAM # here is the main constructor of the Parameter JuMP packages # it will create model *parameters* instead of variables # variables are added to the optimization model, while parameters # are not. Parameters are merged with LP problem constants and do not # increase the model dimensions. β = Parameters(slave, zeros(N_Candidates)) else # Create fixed variables @variable(slave, β[1:N_Candidates] == 0) end # create local constraints # note that *parameter* algebra is implemented just like variables # algebra. We can multiply parameters by constants, add parameters, # sum parameters and varaibles and so on. @constraints(slave, begin ɛ_up_ctr[i in ObsSet(K)], ɛ_up[i] ≥ + ∑(X[j,i] * β[j] for j ∈ Candidates) - y[i] ɛ_dw_ctr[i in ObsSet(K)], ɛ_dw[i] ≥ - ∑(X[j,i] * β[j] for j ∈ Candidates) + y[i] end) # ATTENTION β[j] * X[j,i] Is much slower # create local objective function @objective(slave, Min, ∑(ɛ_up[i] + ɛ_dw[i] for i ∈ ObsSet(K))) # return the correct group of parameters if PARAM return (slave, β) else return (slave, β, FixRef.(β)) end end
slave_model (generic function with 1 method)
Now that all pieces of the original problem can be representad by the convex $z_k(x)$ functions we can recast the problem in the the equivalent form:
\[ \begin{align} & \min_{x} && c^T x + z_1(x) + \dots + z_n(x) && \notag \\ & \text{subject to} && Ax = b && \notag \\ & && x \geq 0 && \notag \\ \end{align} \]
However we cannot pass a problem in this for to a linear programming solver (it could be passed to other kinds of solvers).
Another standart result of optimization theory is that a convex function an be represented by its supporting hyper-planes:
\[ \begin{align} z_k(x) \ = \ & \min_{z, x} && z && \notag \\ & \text{subject to} && z \geq \pi_k(\hat{x}) (x - \hat{x}) + z_k(\hat{x}), \ \forall \hat{x} \in dom(z_k) && \notag \\ \end{align} \]
Then we can re-write (again) the master problem as
\[ \begin{align} & \min_{x, z_k} && c^T x + z_1 + \dots + z_n \notag \\ & \text{subject to} && z_i \geq \pi_i(\hat{x}) (x - \hat{x}) + z_i(\hat{x}), \ \forall \hat{x} \in dom(z_i), i \in \{1, \dots, n\} \notag \\ & && Ax = b \notag \\ & && x \geq 0 \notag \\ \end{align} \]
Which is a linear program!
However, it has infinitely many constraints !!!
We can relax thhe infinite constraints and write:
\[ \begin{align} & \min_{x, z_k} && c^T x + z_1 + \dots + z_n \notag \\ & \text{subject to} && Ax = b \notag \\ & && x \geq 0 \notag \\ \end{align} \]
But now its only an underestimated problem. In the case of our problem it can be written as:
\[ \begin{align} & \min_{\varepsilon, \beta} && \sum_{i \in Nodes} \varepsilon_i \notag \\ & \text{subject to} && \varepsilon_i \geq 0 \notag \\ \end{align} \]
This model can be written in JUMP
function master_model(PARAM) master = Model(with_optimizer(OPTIMIZER)) @variables(master, begin ɛ[Nodes] ≥ 0 β[1:N_Candidates] # 0 ≤ β[Candidates] ≤ 8 end) @objective(master, Min, ∑(ɛ[i] for i ∈ Nodes)) sol = zeros(N_Candidates) return (master, ɛ, β, sol) end
master_model (generic function with 1 method)
The method to solve the master problem and query its solution is given here:
function master_solve(PARAM, master_model) model = master_model[1] β = master_model[3] optimize!(model) return (value.(β), objective_value(model)) end
master_solve (generic function with 1 method)
With these building blocks in hand, we can start building the algorithm.
So far we know how to:
Solve the relaxed master problem
Obtain the solution for the $\hat{x}$ (or $\beta$ in our case)
Now we can:
Fix the values of $\hat{x}$ in the slave problems
Solve the slave problem
query the solution of the slave problem to obtain the supporting hyperplane
the value of $z_k(\hat{x})$, which is the objectie value of the slave problem
and the derivative $\pi_k(\hat{x}) = \frac{d z_k(x)}{d x} \Big|_{x = \hat{x}}$ the derivative is the dual variable associated to the variable $\hat{x}$, which results by applying the chain rule on the constraints duals.
These new steps are executed by the function:
function slave_solve(PARAM, model, master_solution) β0 = master_solution[1] slave = model[1] # The first step is to fix the values given by the master problem @timeit "fix" if PARAM # *parameters* can be set to new values and the optimization # model will be automatically updated β_p = model[2] ParameterJuMP.setvalue!.(β_p, β0) else # JuMP also has the hability to fix variables to new values β_v = model[2] β_v_ref = model[3] fix.(β_v, β0) end # here the slave problem is solved @timeit "opt" optimize!(slave) # query dual variables, which are sensitivities # they represent the subgradient (almost a derivative) # of the objective function for infinitesimal variations # of the constants in the linear constraints @timeit "dual" if PARAM # we can query dual values of *parameters* π = dual.(β_p) else # or, in pure JuMP, we query the duals form # constraints that fix the values of our regression # coefficients π = dual.(β_v_ref) end # π2 = shadow_price.(β_fix) # @show ∑(π .- π2) obj = objective_value(slave) rhs = obj - dot(π, β0) return (rhs, π, obj) end
slave_solve (generic function with 1 method)
Now that we have cutting plane in hand we can add them to the master problem:
function master_add_cut(PARAM, master_model, cut_info, node) master = master_model[1] ɛ = master_model[2] β = master_model[3] rhs = cut_info[1] π = cut_info[2] @constraint(master, ɛ[node] ≥ ∑(π[j] * β[j] for j ∈ Candidates) + rhs) end
master_add_cut (generic function with 1 method)
The complete algorithm is
Solve the relaxed master problem
Obtain the solution for the $\hat{x}$ (or $\beta$ in our case)
Fix the values of $\hat{x}$ in the slave problems
Solve the slave problem
query the solution of the slave problem to obtain the supporting hyperplane
add hyperplane to master problem
repeat
Now we grab all the pieces that we built and we write the benders algorithm by calling the above function in a proper order.
The macros @timeit
are use to time each step of the algorithm.
function decomposed_model(PARAM) reset_timer!() # reset timer fo comparision time_init = @elapsed @timeit "Init" begin println("Initialize decomposed model") # Create the mastter problem with no cuts println("Build master problem") @timeit "Master" master = master_model(PARAM) # initialize solution for the regression coefficients in zero println("Build initial solution") @timeit "Sol" solution = (zeros(N_Candidates), Inf) best_sol = deepcopy(solution) # Create the slave problems println("Build slave problems") @timeit "Slaves" slaves = [slave_model(PARAM, i) for i ∈ Candidates] # Save initial version of the slave problems and create # the first set of cuts println("Build initial cuts") @timeit "Cuts" cuts = [slave_solve(PARAM, slaves[i], solution) for i ∈ Candidates] end UB = +Inf LB = -Inf println("Initialize Iterative step") time_loop = @elapsed @timeit "Loop" for k in 1:80 # Add cuts generated from each slave problem to the master problem @timeit "add cuts" for i ∈ Candidates master_add_cut(PARAM, master, cuts[i], i) end # Solve the master problem with the new set of cuts # obtain new solution candidate for the regression coefficients @timeit "solve master" solution = master_solve(PARAM, master) # Pass the new candidate solution to each of the slave problems # Solve the slave problems and obtain cuttin planes # @show solution[2] @timeit "solve nodes" for i ∈ Candidates cuts[i] = slave_solve(PARAM, slaves[i], solution) end LB = solution[2] new_UB = ∑(cuts[i][3] for i ∈ Candidates) if new_UB ≤ UB best_sol = deepcopy(solution) end UB = min(UB, new_UB) println("Iter = $k, LB = $LB, UB = $UB") if abs(UB - LB)/(abs(UB)+abs(LB)) < 0.05 println("Converged!") break end end println("First coefficients in solution: $(solution[1][1:min(10, N_Candidates)])") println("Objective value: $(solution[2])") println("Time in loop: $time_loop") println("Time in init: $time_init") print_timer() return best_sol[1] end
decomposed_model (generic function with 1 method)
Run benders decomposition with pure JuMP
GC.gc() β1 = decomposed_model(false);
Initialize decomposed model Build master problem Build initial solution Build slave problems Build initial cuts Initialize Iterative step Iter = 1, LB = 0.0, UB = 243.75840787493001 Iter = 2, LB = 3.552713678800501e-15, UB = 243.75840787493001 Iter = 3, LB = 5.387039422128572, UB = 243.75840787493001 Iter = 4, LB = 23.450565692849008, UB = 57.99604186313228 Iter = 5, LB = 33.35659250578567, UB = 49.12208051558095 Iter = 6, LB = 40.135811719362636, UB = 46.13064724733242 Iter = 7, LB = 41.97883975859174, UB = 43.66751463014469 Converged! First coefficients in solution: [3.76754, 0.790079, 0.877002, 0.0552698, 0. 0869099, 0.314411, 0.00889972, 0.152491, 0.118625, 0.23782] Objective value: 41.97883975859174 Time in loop: 0.869508339 Time in init: 0.328968272 ───────────────────────────────────────────────────────────────────────── Time Allocations ────────────────────── ─────────────────────── Tot / % measured: 1.20s / 100% 170MiB / 100% Section ncalls time %tot avg alloc %tot avg ───────────────────────────────────────────────────────────────────────── Loop 1 870ms 72.6% 870ms 100MiB 58.8% 100MiB solve master 7 428ms 35.7% 61.1ms 1.30MiB 0.76% 190KiB solve nodes 7 336ms 28.0% 48.0ms 81.1MiB 47.7% 11.6MiB fix 700 151ms 12.6% 216μs 60.9MiB 35.8% 89.1KiB dual 700 133ms 11.1% 191μs 19.8MiB 11.7% 29.0KiB opt 700 49.5ms 4.13% 70.8μs 153KiB 0.09% 224B add cuts 7 55.4ms 4.62% 7.91ms 14.1MiB 8.27% 2.01MiB Init 1 329ms 27.4% 329ms 70.1MiB 41.2% 70.1MiB Cuts 1 243ms 20.2% 243ms 43.7MiB 25.7% 43.7MiB opt 100 127ms 10.6% 1.27ms 34.7MiB 20.4% 355KiB dual 100 19.5ms 1.63% 195μs 2.83MiB 1.67% 29.0KiB fix 100 1.30ms 0.11% 13.0μs 633KiB 0.36% 6.33KiB Slaves 1 85.5ms 7.14% 85.5ms 26.3MiB 15.5% 26.3MiB Master 1 272μs 0.02% 272μs 147KiB 0.08% 147KiB Sol 1 855ns 0.00% 855ns 928B 0.00% 928B ─────────────────────────────────────────────────────────────────────────
Run benders decomposition with ParameterJuMP
GC.gc() β2 = decomposed_model(true);
Initialize decomposed model Build master problem Build initial solution Build slave problems Build initial cuts Initialize Iterative step Iter = 1, LB = 0.0, UB = 243.75840787492987 Iter = 2, LB = 2.1175089722073185e-13, UB = 243.75840787492987 Iter = 3, LB = 5.387039422129284, UB = 243.75840787492987 Iter = 4, LB = 23.450565692846137, UB = 57.99604186319306 Iter = 5, LB = 33.35659250579359, UB = 49.12208051560403 Iter = 6, LB = 40.13581171937309, UB = 46.13064724734912 Iter = 7, LB = 41.97883975859829, UB = 43.66751463015741 Converged! First coefficients in solution: [3.76754, 0.790079, 0.877002, 0.0552698, 0. 0869099, 0.314411, 0.00889972, 0.152491, 0.118625, 0.23782] Objective value: 41.97883975859829 Time in loop: 0.483006541 Time in init: 0.177601984 ───────────────────────────────────────────────────────────────────────── Time Allocations ────────────────────── ─────────────────────── Tot / % measured: 661ms / 100% 53.3MiB / 100% Section ncalls time %tot avg alloc %tot avg ───────────────────────────────────────────────────────────────────────── Loop 1 483ms 73.1% 483ms 18.5MiB 34.7% 18.5MiB solve master 7 383ms 58.0% 54.8ms 1.30MiB 2.44% 190KiB solve nodes 7 64.6ms 9.78% 9.23ms 5.57MiB 10.4% 814KiB opt 700 53.8ms 8.15% 76.9μs 4.25MiB 7.98% 6.22KiB dual 700 5.74ms 0.87% 8.20μs 1.09MiB 2.04% 1.59KiB fix 700 3.08ms 0.47% 4.41μs 54.7KiB 0.10% 80.0B add cuts 7 33.3ms 5.04% 4.76ms 11.6MiB 21.7% 1.65MiB Init 1 178ms 26.9% 178ms 34.8MiB 65.3% 34.8MiB Cuts 1 109ms 16.5% 109ms 13.9MiB 26.1% 13.9MiB opt 100 31.9ms 4.82% 319μs 9.29MiB 17.4% 95.1KiB dual 100 1.28ms 0.19% 12.8μs 159KiB 0.29% 1.59KiB fix 100 484μs 0.07% 4.84μs 7.81KiB 0.01% 80.0B Slaves 1 67.8ms 10.3% 67.8ms 20.7MiB 38.9% 20.7MiB Master 1 278μs 0.04% 278μs 148KiB 0.27% 148KiB Sol 1 855ns 0.00% 855ns 928B 0.00% 928B ─────────────────────────────────────────────────────────────────────────
Plot resulting time series from the benders base estimations
const y1 = X' * β1 const y2 = X' * β2 plt = plot(time, y, xlabel = "Time (s)", ylabel = "Amplitude") plot!(plt, time, y1) plot!(plt, time, y2)
ParameterJuMP was developed by Joaquim Dias Garcia (@joaquimg) and Benoît Legat (@blegat)