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Motivation

We consider a peer-to-peer community,
where different buildings exchange energy

Lecture outline

o We will formulate a
(stochastic) optimization problem
B o We will apply
algorithm on it

e We will put emphasis on the
numerical side
(built on top of JuMP!)
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Nodal decomposition of a
network optimization problem



Modeling flows between nodes

Graph G = (V,€)

At each time t € [0, T — 1],
Kirchhoff current law couples nodal
and edge flows

AQ,+F, =0

o Q¢ flow through edge e,

o Fi flow imported at node i

Let A be the node-edge incidence matrix
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Writing down the nodal problem

We aim at minimizing the nodal costs over the nodes i € V

T—-1
Fp(F) = min E[ 37 Li(XL UL W, ) +K/(X])]
x' v’ =0 ——————————’

instantaneous cost
subject to, for all t € [0, T — 1]
i) The nodal dynamics constraint (for battery and hot water tank)
i iryi i
Xip1 = & (X4, Ut’Wt+1)
II) The non-anticipativity constraint (future remains unknown)

U(Ui) Co(Wg, -, W,)

III) The load balance equation (production + import = demand)
A(X, Uy FuW, ) =0
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Transportation costs are decoupled in time

At each time step t € [0, T — 1] , we define the edges cost as the sum of
the costs of flows Q¢ through the edges e of the grid

JEQ) =E( Y r(@p)

t

—
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Global optimization problem

The nodal cost J), aggregates the costs at all nodes i

Jv(F) = Z Sy (F)

i€y

and the edge cost Je aggregates the edges costs at all time t

Je(Q) = ZJ;(Qe)

ecé

The global optimization problem writes
Vi = min W(F)+Je(Q)

st. AQ+F=0
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What do we plan to do?

e We have formulated a multistage stochastic optimization problem
on a graph

e We will handle the coupling Kirchhoff constraints by
two decomposition methods

— Price decomposition
— Resource decomposition

e We will show the scalability of decomposition algorithms
(We solve problems up to 48 buildings)
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Resolution methods



The three levels of coordination

Price decomposition decomposes the global problem with a price process A
Three levels of hierarchy

1. The central planner fixes a price A

so as to optimize global cost

/ @ 2. The nodal managers manage buildings

to decrease local costs

3. Nodal value functions are computed
locally, time steps by time steps
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The central planner has to find optimal coordination process

e The central planner aims to find the optimal price process A
max V() := min Jp(F) + Jr(Q) + (X,AQ +F)

e Let A(K) be a given price
The global function M(A(k)) decomposes w.r.t. nodes and arcs

T

~ N
- :Zn;i,.n {Jp(F) + (N ,F)}
i=1

/\(3 local problem

N
o)+ 0. F = e 3 AED+ )
RL

e Once subproblems solved by each nodal managers,
she updates the price with the oracle VM()\(“))

A4 = A oy (Ak)
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Managing buildings in each no

At each building i € [1, N], the nodal manager

e Receives a price X' from the central planner and build the nodal problem
V(X)) = min Jp(F') + (X', F)
FI
which rewrites as a Stochastic Optimal Control problem
T-1
Vi) = min B[ Y7 LEXE UL W) + (AL FL + KT(X7))
X' uf Fi 0
st Xiq = £ (X, Up, Wi )
a(Uh) C o(WE,--- ,Wi)
A';(X';, Ultl’v FQVWtJrl) =0

e Solves V/ by Dynamic Programming

e Estimates by Monte Carlo the local gradient
by simulating the optimal flow (F/)# = (Ff,..- ,FL_ )¢

VVI(X) =E[(F)!] eRT 10/23



dal value functions compute by Dynamic Programmi

If the price process A = (Xg, -+, Ay_;) is Markovian, then
e We are able to compute value functions {Vi} by backward recursion

e At each time step, we solve the local one-step DP problem

Wil
Vi(xt) = ’u‘?i{,‘- Z s (Le(xe, up®, Wi )+ (A", £y 4+ Vo (F (xe, ug®, Wepy))
£t =1

that decomposes on all atoms

e DP one-step problem formulates as LP or QP problem!
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How about resource allocation?

o We fix allocations R rather than prices A

and solve

min V(R) := Vp(R) + V1(R)

R
R2(;<) with
Vp(R) = min Jp(F) V7 (R) =min Jr(Q)
f/ \1| sttt F-R=0 st. AQ+R =0
-] | ) e We must ensure that R, € im(A), that is
R

Ri+---+Rt =0

e The update step becomes

R = PTOJjm(a) (R(k) - PVV(RW))
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We obtain lower and upper bounds

Theorem
e For all multipliers A = (Xg, -+, Ar_4)
e For all allocations R = (Ry,--- ,Ry_;) such that
N
Ri+---+RY=0

we have
V(M) < V¥ <V(R)

Proof.
Next thursday!
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Deducing two admissible global control pol

Once value functions Vi and V, computed, we define

e the global price policy
N

1 N H i i, i i
Et(xt st Xt Wei1) € arg min § Lt(Xt: Ugs Wei1) +Mlt+1 (X{url)
ut,fe,qe i=1

st xiyy = gl(x}, ul, wein) , Vi€ [1,N]
A‘;’(Xtivu{*v fti1 W{+1) ) \V/l € |[1, N]]
Aq: +fr =0

e the global resource policy
N .
— . i [ [ rwil i
Ty ot wer) € argmin B[ 7 L, ul wern) + Vigy (xE)
ut,ft,qe i1
st xiq = gl(x, ul, weir) , Vi€ [1,N]
AIL”(X{:? ui’ fti’ Wl"'+1) ) Vi S |I1’ N]]
Ag:+ =0
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Numerical results on urban
microgrids




We consider different urban configurations

3-Nodes 6-Nodes 12-Nodes
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Problem settings

e One day horizon at 15mn time step: T = 96
e Weather corresponds to a sunny day in Paris (June 28th, 2015)

e We mix three kind of buildings
1. Battery + Electrical Hot Water Tank
2. Solar Panel + Electrical Hot Water Tank
3. Electrical Hot Water Tank

and suppose that all consumers are commoners sharing their devices
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Algorithms inventory

Nodal decomposition

e Encompass and decompositions

e Resolution by Quasi-Newton (BFGS) gradient descent
AAD = AR 4 (O w kg v (AK)
e BFGS iterates till no descent direction is found

e Each nodal subproblem solved by SDDP (quickly converge)
e Oracle VV/(X) estimated by Monte Carlo (N*" = 1,000)

SDDP
We use as a reference the good old SDDP algorithm

e Noises W%, cee ,W,{V are independent node by node
(total support size is |supp(W})|V.) Need to the support!
e Level-one cut selection algorithm (keep 100 most relevant cuts)

e Converged once gap between UB and LB is lower than 1% /
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Building problems on the fly

We use metaprogramming to build AbstractStochasticProgram
on the fly

Build node problem dynamically:

In [ ]: exphouse = Expr[]

for dev in house.devices
# parse device's dynamics as Expr
dyn = parsedevice(dev, xindex, uindex, house.time.6t, params)
push! (exphouse, dyn...)
xindex += nstates(dev)
uindex += ncontrols(dev)

end

eval(:((t, x, u, w) -> $exphouse))

Then build global problem dynamically:

In [ 1: expgrid = Expr(:vect)
for node in pb.nodes
/ N # parse dynamics of nodes
[;] ex = parsebuilding(node, xindex, uindex, node.time.&t, params)
— push! (expgrid.args, ex...)
xindex += nstocks(node)

uindex += ncontrols(node
end

eval(:((t, x, u, w) -> $expgrid))
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Each level of hierarchy has its own algorithm

L-BFGS (IPOPT)
Global

Nodal managers SDDP (StochDynamicProgramming)

One-step DP @ (Cuet)

All glue code is implemented in Julia 0.6 with JuMP 0.18

; O
julia O
Special thanks to all JuliaOpt folks!
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Fortunately, everything converge nicely!

[llustrating convergence for 12-Nodes problem

s SDDP LB
& SDDP UB
Confidence (95.0%)
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Figure 1: SDDP convergence, upper and lower bounds
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Fortunately, everything converge nicely!

[llustrating convergence for 12-Nodes problem

0.175 q
0.150 -
0.125 A

0.100 -

Price

0.075 A

0.050 -

0.025 A

0.000 -

Iteration

Figure 1: DADP convergence, multipliers for Node-1
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and lower bounds on the global problem

Graph | 3-Nodes 6-Nodes 12-Nodes 24-Nodes  48-Nodes
State dim. IX] 4 8 16 32 64
SDDP time 1 3 10’ 79’ 453’
SDDP LB 2.252 4.559 8.897 17.528 33.103
Price time 6’ 14 29’ 41’ 128’
Price LB 2.137 4.473 8.967 17.870 33.964
Resource time 3 7 22 49’ 91’
Resource uB 2.539 5.273 10.537 21.054 40.166
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and lower bounds on the global problem

Graph | 3-Nodes 6-Nodes 12-Nodes 24-Nodes  48-Nodes

State dim.  [X] 4 8 16 32 64
SDDP time 1 3 10’ 79’ 453’
SDDP LB 2.252 4.559 8.897 17.528 33.103
Price time 6’ 14 29’ 41’ 128’
Price LB 2.137 4.473 8.967 17.870 33.964
Resource time 3 7 22 49’ 91’
Resource UB 2.539 5.273 10.537 21.054 40.166
For the 24-Nodes problem

Vi[sddp] < Vylprice] < V* < Vo[resource]

17528 < 17870 < V! < 21.054
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Upper and lower boun global problem

Graph | 3-Nodes 6-Nodes 12-Nodes 24-Nodes  48-Nodes
State dim. IX] 4 8 16 32 64
SDDP time 1 3 10’ 79’ 453’
SDDP LB 2.252 4.559 8.897 17.528 33.103
Price time 6’ 14 29’ 41’ 128’
Price LB 2.137 4.473 8.967 17.870 33.964
Resource time 3 7 22 49’ 91’
Resource uB 2.539 5.273 10.537 21.054 40.166

e For the 24-Nodes problem

v
vi

Vylsddp] < V,lprice]

< Vo[resource]
17.528 < 17.870

<
< 21.054

<
<

e For the biggest instance, Price Decomposition is 3.5x as fast as SDDP
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Policy evaluation by Monte Carlo simulation

‘ Graph ‘ 3-Nodes 6-Nodes 12-Nodes 24-Nodes 48-Nodes ‘
‘ SDDP policy ‘ 2.26 £ 0.006 4.71 +£0.008 9.36 + 0.011  18.59 4 0.016 ~ 35.50 £ 0.023 ‘
Price policy 2.28 £ 0.006 4.64 +0.008 9.23 +0.012 18.39 4 0.016  34.90 £ 0.023

Gap -0.9 % +1.5% +1.4% +1.1% +1.7%
Resource policy | 2.29 4+ 0.006 4.71 4+ 0.008  9.31 £+ 0.011  18.56 £+ 0.016  35.03 + 0.022
Gap -1.3 % 0.0% +0.5% +0.2% +1.2%

Price policy beats SDDP policy and resource policy

Vi < Clprice] < Clresource] <
vi < 1839 < 18.56 < 1859
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Conclusion




Conclusion

e We have presented two algorithms that decompose,
spatially then temporally, a global optimization problem
under coupling constraints

e On this case study, decomposition beats SDDP
for large instances (> 24 nodes)
— In time (3.5x faster)
— In precision (> 1% better)

e Extension?

e Move from nodal to zonal decomposition
e Parallelization (towards a spatial parallelization scheme for SDDP)
e Test other decomposition schemes (operator splitting)
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